• Основополагающий патент промышленной ультразвуковой технологии на основе акустической кавитации и газоструйных генераторов



    РОССИЙСКАЯ ФЕДЕРАЦИЯ

    ФЕДЕРАЛЬНАЯ СЛУЖБА
    ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
    ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
    (19) RU (11) 2457896 (13) C1  
    (51)  МПК

    B01F11/02   (2006.01)

    (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

    Статус: по данным на 21.08.2012 - действует
    Пошлина: учтена за 3 год с 30.11.2012 по 29.11.2013

    (21), (22) Заявка: 2010148726/05, 29.11.2010

    (24) Дата начала отсчета срока действия патента:
    29.11.2010

    Приоритет(ы):

    (22) Дата подачи заявки: 29.11.2010

    (45) Опубликовано: 10.08.2012

    (56) Список документов, цитированных в отчете о
    поиске: RU 85838 U1, 20.08.2009. RU 2008102960 A, 17.07.2009. RU 2316227 C1, 10.02.2008. RU 2268772 C1, 27.01.2006. RU 2250138 C1, 20.04.2005. WO 2006027002 A1, 16.03.2006.

    Адрес для переписки:
    390007, г.Рязань, ул. Роща, 5, В.С. Аникину

    (72) Автор(ы):
    Аникин Владимир Семенович (RU),
    Аникин Владимир Владимирович (RU)

    (73) Патентообладатель(и):
    Аникин Владимир Семенович (RU),
    Аникин Владимир Владимирович (RU)



    (54) СПОСОБ АКУСТИЧЕСКОЙ ОБРАБОТКИ МНОГОФАЗНОГО ПРОДУКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

    (57) Реферат:

    Изобретение относится к акустическим способам воздействия на многокомпонентную и многофазовую смесь твердых, жидких и газовых продуктов и может использоваться для тепломассоэнергообмена, эмульгирования и термообработки в нефтяной и пищевой промышленности. В потоке многофазного продукта организуют вихревые и струйные процессы. Газ или пар вводят через газоструйные генераторы. Осуществляют обработку многофазных сред - газовзвесей, пузырьковых жидкостей, газо- и парожидкостных потоков, смесей взаимонерастворимых жидкостей, многофазной полидисперсной смеси. Газовзвеси подают в обрабатываемый поток через газоструйный генератор. Технический результат состоит в высокой интенсивности акустической обработки за счет эффективного взаимодействия волнового газового потока с многофазной дисперсной системой продукта. 2 н. и 9 з.п. ф-лы, 6 ил.

     

    Область техники, к которой относится изобретение

    Изобретение относится к акустическим (ультразвуковым) способам воздействия на многокомпонентную и многофазную смесь твердых, жидких и газовых составляющих обрабатываемого продукта в механофизико-химических процессах тепломассоэнергообмена, диспергирования, эмульгирования, термообработки и подобных им.

    Описание уровня техники

    Известны способы изменения физико-химических свойств продуктов путем воздействия колебательными процессами волновых излучателей с различными колебательными устройствами, в которых волновая энергия ведет к изменению свойств исходного продукта. Волновое излучение может быть от твердой поверхности генераторов (пьезокерамические и магнитострикционные излучатели), в жидкости при кавитации и в газоструйных генераторах. Известен способ интенсификации химических реакций (патент РФ 2232629, 7B01J 19/10, опубликован 20.07.04), в котором звуковую энергию - источник ионизации молекул продукта - вводят в жидкую среду в области контакта реагентов в реакционной камере, а звуковые преобразователи заданных частот и энергий расположены в потоке реагентов. Недостатками этого метода является необходимость использования специальных генераторов и излучателей, передача энергии большой интенсивности от которых ограничена. Известен способ приготовления жидких кормов и установка для его осуществления (патент РФ 2316227, А23K 1/00, A23N 17/00, от 21.04.2006), в котором приготовление гуминовых кислот и гуматов из торфа или бурого угля осуществляют путем кавитационного диспергирования торфа или бурого угля в водном растворе щелочей до полного выхода гуминовых кислот с последующим получением гуматов. Из множества устройств, использующих кавитационные процессы в жидкости, известен как наиболее эффективный способ интенсификации тепломассообмена (патент РФ 2268772, 7 B01F 11/02, от 21.01.2004), в котором осуществляется резонансное возбуждение вихревых потоков, взаимодействующих друг с другом в вихревых трубах, сообщенных между собой. Недостатком кавитационных способов является невозможность достижения больших интенсивностей звуковой энергии, необходимой в большей части технологий преобразования продуктов. Наиболее близкие по технической сущности и достигнутому результату устройство деструкции углеводородов и способ его применения в качестве деструктора углеводородов путем акустического резонансного возбуждения вихревых потоков продуктов (патент РФ 2392046, 7B01F 11/02, от 25.01.2008 прототип), в котором кроме кавитационного процесса используются газоструйные генераторы, настроенные на заданные частоты. С помощью вихревых и струйных процессов в потоке многофазного продукта, в которые газ вводится через газоструйные генераторы, возможно достижение высокой интенсивности акустической обработки и получения веществ с новыми свойствами.

    Раскрытие изобретения

    Задачей настоящего изобретения является создание такого способа акустического воздействия на поток многофазного продукта, в котором

    - создается интенсивность волновой энергии, достаточная для достижения деструкции дисперсно-агрегатного состояния продукта и необходимого преобразования химических связей;

    - используется акустическая кавитация в вихревом или струйном потоке за счет энергии газоструйных генераторов;

    - используется тепломассоэнергообменный процесс потока для проведения преобразований продукта.

    Поставленная задача решается с помощью тепломассоэнергообменного процесса методом акустического резонансного возбуждения одного или нескольких потоков, создаваемых в струйных камерах или вихревых трубах, газовый ввод в которые составляющей смеси обрабатываемого продукта выполнен в виде газоструйных генераторов. Предлагаемый способ ввода газовой составляющей за счет большой акустической мощности газоструйных генераторов приводит к интенсивной акустической кавитации жидкой составляющей продукта. В газовой и жидкой фазах продукта возникают пульсирующие сверхдавления, приводящие к диспергированию, эмульгированию и другим процессам. За счет большой площади соприкосновения акустической волны газового потока с жидким и твердым компонентами обрабатываемого продукта, возможна передача энергии большой интенсивности. Основной проблемой передачи волновой энергии большой интенсивности (10 Вт/см2 и более) от излучающей поверхности в жидкость является эффект появления "кавитационного облака" на границе сред, препятствующего передачи энергии. Поэтому необходим способ передачи в жидкость и дисперсный твердый продукт энергии большой интенсивности, что осуществляется в предлагаемом способе с помощью газоструйных генераторов.

    Для осуществления настоящего способа обработки многофазного продукта предлагается устройство интенсификации тепломассоэнергообмена, состоящее из одной и более камер, в которых обрабатываемый в потоках продукт диспергируется, эмульгируется и другое за счет волновой энергии большой интенсивности газоструйных генераторов. При этом потоки могут быть как струйные [6] с камерой смешения, так и вихревые [5] с вихревыми трубами. Между жидкой фазой потока и газовой, особенно при вихревом движении, создается большая площадь соприкосновения, увеличивающаяся в процессе взаимодействия за счет диспергирования в возникающих сверхдавлениях волнового кластерного процесса кавитации [3]. Твердая фаза продукта так же за счет сверхдавлений подвергается диспергированию и различным преобразованиям исходного вещества. Так, например, при обработке вихревого водо-торфяного потока, активированного выходным воздушным или паровым потоком газоструйного генератора с интенсивностью ультразвука более 10 Вт/см2 , получается ценное вещество, содержащее гуминовые кислоты и другие органические и минеральные компоненты, доступные для питания растений. Основной задачей разработки устройства обработки многофазного продукта является достижение максимальной интенсивности ультразвука в рабочих камерах, достаточной для деструкции обрабатываемого продукта. Для решения этой задачи осуществляется максимальная мощность ультразвукового воздействия на рабочий поток, что достигается усилением кавитационных процессов в жидкости акустической кавитацией за счет энергии газоструйных ультразвуковых генераторов. Использование вихревых рабочих потоков и усиление кавитационных процессов за счет технологии множества соприкасающихся вихревых потоков позволяет достичь усиления и синхронизации ультразвуковых колебаний и кластерного волнового процесса. Собственная частота устройства должна соответствовать рабочей, при которой достигается требуемое преобразование продукта. Достигаемая высокая интенсивность ультразвукового излучения способствует достижению высокой кумуляции энергии в пузырьках [4] и кавитационной ионизации. Вихревой поток дает возможность увеличить интенсивность кавитационных процессов во внешних слоях вихря за счет большого центробежного ускорения, примерно равного a~1500 g, приводящего к увеличению давления в потоке и сепарации пузырьков в центр вихря с образованием газового столба. Для достижения равномерности процесса кавитационной ионизации в центрах рабочих камер с вихревыми трубами располагаются цилиндрические вытеснители переменного сечения, позволяющие строить зоны различной интенсивности. Большая интенсивность требуется в области ввода продукта, где достигается начальная деструкция вещества.

    Особенности изобретения будут дополнительно понятны из нижеследующего описания прилагаемых чертежей.

    Краткое описание чертежей

    Для описания изобретения прилагаются чертежи, на которых

    фиг.1 - схема цилиндра вихревой трубы с вводом, выполненным в виде газоструйного генератора;

    фиг.2 - схема водогазового эжектора с ультразвуковыми газоструйными генераторами;

    фиг.3 - частотная характеристика устройства с вводом газообразного продукта, выполненного в виде газоструйного генератора акустических колебаний;

    фиг.4 - фотография начальной области рабочей камеры ультразвукового реактора с газоструйным генератором;

    фиг.5 - схема деструкции нефти с ультразвуковым газоструйным реактором;

    фиг.6 - схема получения ультрадисперсной эмульсии торфа (УДЭТ) с ультразвуковым газоструйным реактором.

    Осуществление изобретения

    Способ интенсификации тепломассоэнергообмена в механофизико-химическом процессе превращений методом акустического воздействия на поток многофазного продукта осуществляется в реакторе с ультразвуковыми газоструйными генераторами. На фиг.1 условно показана схема вихревой трубы 3 с тангенциальными входами соплами ввода жидкого продукта 1 и газовой составляющей 4. Вихревая труба 3 вместе с вытеснителем 2 для усиления вихревых процессов могут быть выполнены с переменными образующими границ. Газ поступает под давлением от внешнего источника, например насоса, компрессора, вначале в газоструйный генератор 4 (на схеме разновидность генератора Гартмана [1]) и далее через сопло в вихревую камеру. Дисперсный твердый продукт поступает либо в смеси с жидкой фазой через сопло 1, либо с газовой фазой через вход 4. В случае наличия жидкой фазы в вихревой трубе осуществляется мокрый помол (уменьшение размера частиц твердой фазы). При отсутствии жидкой фазы в вихревой трубе осуществляется сухой помол твердого компонента продукта, который может вводиться как через сопло 1, так и через газоструйный генератор 4. На фиг.2 показана схема эжектора с камерой смешения 3, газоструйными генераторами 4 и газовыми входами 1, 2. В таком эжекторе осуществляется лучшее растворение газов в жидкости. При турбулентном движении в камерах потока продукта в жидкости возникают кавитационные процессы, которые усиливаются акустической кавитацией за счет энергии газоструйных генераторов. Акустическая мощность газоструйного генератора Гартмана  , где dc - диаметр сопла в сантиметрах, P - давление газа в килограммах силы на сантиметр в квадрате [2, стр.172] при рабочем давлении P=3 атм из формальных преобразований

     .

    В рабочих цилиндрах интенсивность ультразвука из-за эффекта рассеивания будет ниже этой величины. Геометрией рабочих камер и осевых вытеснителей можно создавать зоны различной интенсивности. Таким образом интенсивность ультразвука на выходе газоструйного генератора намного больше достигаемой интенсивности в гидродинамических кавитаторах, в которых в среднем I=2 Вт/см2. Поэтому эффективность обработки многофазного продукта при таком способе намного выше. На фиг.3 приведена частотная характеристика устройства с вводом газообразного продукта, выполненного в виде газоструйного генератора акустических колебаний с частотой 19,5 кГц. В диапазоне 42-50 кГц видна часть частотной характеристики основного гидродинамического процесса кавитации. Видно, что мощность (квадрат амплитуды) газоструйного процесса на порядок превышает гидродинамический процесс. При такой интенсивности возникают большие локальные давления порядка тысяч атмосфер (сверхдавления), что приводит к деструкции обрабатываемого вещества, в жидкости при захлопывании пузырьков газа образуются сферические ударные волны [3, 4]. Установлено, что усиление сверхсжатия происходит при увеличении интенсивности акустической волны, при использовании пара, когда минимизируется торможение жидкости, достигается большая кинетическая энергия жидкости, а также в кластерном пузырьковом процессе. Сверхсжатие усиливается в жидкости с тяжелыми молекулами (органика) и при низких температурах.

    Для реализации описанного способа интенсификации тепломассоэнергообмена в качестве частного случая исполнения представляется однокамерная конструкция устройства, изображенная на фиг.4. Устройство состоит из корпуса цилиндрической рабочей камеры 3 (отодвинута вправо), вытеснителя 2, крышки 5 с соплом жидкого продукта 1 и соплом газоструйного генератора 4. В начальной части вытеснитель (частично выкручен) имеет кольцевую часть большего диаметра, в результате чего образуется локальная кольцевая область вихревой камеры, где интенсивность ультразвука выше областей ниже по потоку. Эта большая начальная интенсивность ультразвука вызывает первоначальную деструкцию продукта, за счет механофизического воздействия. Для увеличения интенсивности ультразвука и интегрального воздействия на обрабатываемый поток количество рабочих камер проектируется исходя из оптимальных условий производительности одной камеры и условия суммарной производительности устройства. Критерием выбора среднего диаметра рабочей камеры является достижение максимума центробежного ускорения, которое можно увеличить, уменьшая диаметр камеры. Однако при этом увеличивается гидравлическое сопротивление потоку, поэтому существует наилучшая геометрия, когда достигается максимум центробежного ускорения.

    Способ интенсификации тепломассоэнергообмена с газоструйным генератором позволяет, в связи с достижением высокой интенсивности ультразвука, строить технологии переработки нефти. На фиг.5 представлена схема деструкции нефти, позволяющая уменьшить ее вязкость, увеличить выход светлых фракций при крекинге, а также уменьшить отложения на стенках труб при транспортировке. Нефть поступает в реактор, в котором на газоструйный генератор подается углеводородный газ из дегазатора, в который поступает обработанная нефть из реактора. В дегазаторе регулируется объем дегазируемого продукта и давление газа.

    На фиг.6 представлена схема получения ультрадисперсной эмульсии торфа (УДЭТ). По входу жидкого продукта подается водная смесь с торфом. На газоструйный генератор подается воздух или пар. В результате достигается мокрый помол торфа с дисперсностью 1 мкм. В результате полученное новое вещество становится в форме биодоступных органических соединений и микроэлементов, включает гуминовые кислоты, фульвокислоты и, таким образом, становится ценным удобрением. Кроме этого УДЭТ может использоваться при приготовлении кормов, а также в медицине.

    В литературе до настоящего времени авторами не обнаружены описания устройств, осуществляющих обработку многокомпонентного многофазного потока гидродинамической кавитацией и акустической кавитацией за счет газоструйных генераторов. Это позволяет сделать заключение, что заявляемое техническое решение соответствует первому условию патентоспособности изобретения - новизна. Исследования, проведенные авторами в поисках аналогов, экспериментов с аналогами вихревых устройств, промышленными испытаниями устройств интенсификации тепломассообменных процессов и прототипа, позволяют сделать заключение, что достигаемые интенсивности ультразвука и получаемые сверхдавления в волновом кластере не доступны в других разработках. Например, получение гуматов из торфа возможно только в щелочной среде, если использовать гидродинамический кавитатор (патент РФ 2316227). В отличие от этого, как видно из вышеизложенного, заявляемое устройство обеспечивает обработку многофазного продукта при высокой интенсивности ультразвука (до сотен Вт/см2), что дает возможность проводить различные механофизико-химические преобразования продукта, получать новые вещества. Технические решения, достигающие этот результат, не вытекают явным образом из известного на сегодняшний день уровня техники, поэтому предлагаемое техническое решение соответствует второму условию патентоспособности изобретения - изобретательский уровень. Изготовленные опытные образцы проходили испытания в нефтяных технологиях, в пищевой промышленности, также получена ультрадисперсная эмульсия торфа, которая легко усваивается растениями. Поэтому заявляемое техническое решение соответствует третьему условию патентоспособности изобретения - промышленная применимость.

    Таким образом, применение заявляемого устройства позволяет интенсифицировать тепломассоэнергообмен, проводить деструкцию многокомпонентных многофазных продуктов при меньших энергетических и трудовых затратах.

    Источники информации

    1. Бергман Л. Ультразвук и его применение в науке и технике, Пер. с нем., 2 изд. М., 1957. 368 с.

    2. Ультразвук: Маленькая энциклопедия. - М.: Сов. Энциклопедия, 1979 - 400 с.

    3. Taleyarkhan, R., Block, R., Lahey (Jr.) R., R.I.Nigmatulin, and Y. Xu, Nuclear Emissions During Self-Nucleated Cavitation, Physics Review Letters, 96, 034301, 2006.

    4. Р.Нигматулин. Кавитационный кластер паровых микропузырьков как нано-термоядерная бомба. Доклад на конференции по механике сплошной среды, посвященной 100-летию академика Л.И.Седова, 12-13 ноября 2007 г.

    5. Патент РФ  2392046 от 25.01.2008. Устройство деструкции углеводородов.

    6. Патент РФ  77176 от 12.02.2008. Эжектор с газоструйными ультразвуковыми генераторами.

    Формула изобретения

    1. Способ тепломассоэнергообмена путем акустического воздействия на многокомпонентную и многофазовую смесь твердых, жидких и газовых составляющих обрабатываемого продукта, для чего организуются вихревые и струйные процессы в потоке многофазного продукта, отличающийся тем, что газ или пар вводится через газоструйные генераторы, что дает возможность достижения высокой интенсивности акустической обработки за счет эффективного взаимодействия волнового газового потока с многофазной дисперсной системой продукта.

    2. Способ по п.1, отличающийся тем, что осуществляется тепломассоэнергообмен многофазных сред - газовзвесей, пузырьковых жидкостей, газо- и парожидкостных потоков, смесей взаимонерастворимых жидкостей, многофазной полидисперсной смеси.

    3. Способ по п.1, отличающийся тем, что газовзвеси подаются в обрабатываемый поток через газоструйный генератор.

    4. Способ по п.1, отличающийся тем, что осуществляется тепломассоэнергообмен для полидисперсной водо-торфяной смеси с образованием гуминовых кислот.

    5. Способ по п.1, отличающийся тем, что поток из газоструйного генератора поступает в вихревой или струйный потоки.

    6. Устройство тепломассоэнергообмена, состоящее из рабочих камер, отличающееся тем, что ввод газа, пара или газовзвеси в обрабатываемый поток осуществляется через газоструйные генераторы.

    7. Устройство по п.6, отличающееся тем, что рабочие камеры объединяются на выходе потока в общей камере озвучивания.

    8. Устройство по п.6, отличающееся тем, что интенсивность акустической обработки потока усиливается за счет синхронизации волновых кластерных процессов в рабочих камерах, достигаемой геометрией камер с частичным соприкосновением потоков.

    9. Устройство по п.6, отличающееся тем, что интенсивность акустической обработки потока усиливается за счет проектирования собственной частоты устройства равной заданной, при которой достигается наибольшая деструкция продукта.

    10. Устройство по п.6, отличающееся тем, что в рабочих камерах достигается интенсивность ультразвука, достаточная для получения потока полидисперсной водо-торфяной смеси с образованием вещества с гуминовыми кислотами.

    11. Устройство по п.6, отличающееся тем, что в вихревых потоках обрабатываются пищевые продукты.

    РИСУНКИ

     

         



  •  

     На Самотлоре более 18и месяцев проводится эксперимент по акустической обработке призабойной зоны, деструкции нефти и устранению АСПО с помощью устройства ВГУР, установленного на НКТ. 
    Документы можно смотреть по этой ссылке. http://vgur.gnm.su



    ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,

    ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
    (РОСПАТЕНТ)

         15.06.2011                                                    035614                                               2011124142
     
    Дата поступления                                                        Входящий №                                                   Регистрационный №

                              ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

                                   УВЕДОМЛЕНИЕ О ПОСТУПЛЕНИИ И РЕГИСТРАЦИИ ЗАЯВКИ

    Способ получения гуминовых препаратов и вещество - ультрагумат, полученное этим способом.

    Заявитель

       Общество с ограниченной ответственностью "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ "ТЕХМАШ" "

       Аникин Владимир Семенович, г. Рязань
     

    РЕФЕРАТ

     
            Изобретение относится к  технологии  производства гуминовых препаратов и может быть использовано в сельском хозяйстве, в частности, в растениеводстве и животноводстве, а также в медицине.  
    Технический результат, достигаемый при осуществлении заявленного изобретения, заключается в создании эффективной технологии переработки гуматосодержащих веществ (торф, бурый уголь, чернозем), позволяющей получать водорастворимые органические вещества с высоким содержанием фульвовых и гуминовых кислот при упрощении технологического процесса их производства, снижении трудоемкости и материалоемкости технологического процесса, что, соответственно, обуславливает снижение себестоимости конечного продукта.
     Указанный технический результат достигается за счет того, что при получении гуминовых препаратов осуществляется ультразвуковое диспергирование гуматосодержащих веществ. При этом создают, по меньшей мере, один струйный или вихревой поток гуматосодержащих веществ, который обрабатывают воздушным или паровым потоком с использованием газоструйного генератора с интенсивностью ультразвукового излучения более 10 Вт/см2. В результате получается вещество – ультрагумат, в котором содержание фульвовых и гуминовых кислот в расчёте на абсолютно сухое вещество составляет соответственно 48,78 и 16,34%.
     

    ФОРМУЛА ИЗОБРЕТЕНИЯ

     
    1. Способ получения гуминовых препаратов, включающий ультразвуковое  диспергирование гуматосодержащих веществ, отличающийся тем, что создают, по меньшей мере, один струйный или вихревой поток гуматосодержащих веществ, который обрабатывают воздушным или паровым потоком с использованием газоструйного генератора с интенсивностью ультразвукового излучения более 10 Вт/см2.
    2. Гуминовый препарат - ультрагумат, полученный способом,  описанным в п. 1.

     


  • ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
    ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
    (РОСПАТЕНТ)
     

                              ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

                                   УВЕДОМЛЕНИЕ О ПОСТУПЛЕНИИ И РЕГИСТРАЦИИ ЗАЯВКИ
     

     

         29.11.2010                                                    070379                                               2010148726
     
    Дата поступления                                                        Входящий №                                                   Регистрационный №

     

    Способ акустической обработки многофазного продукта
     и устройство для его осуществления

     

                                                                     Заявитель
               Аникин Владимир Семенович, г.Рязань
               Аникин Владимир Владимирович, г. Рязань

     
                                                                     Реферат

     Разработан способ тепломассоэнергообмена путем акустического воздействия на многокомпонентную и многофазовую смесь твердых, жидких и газовых составляющих обрабатываемого продукта, для чего организуются вихревые и струйные процессы в потоке многофазного продукта, отличающийся тем, что газ или пар вводится  через газоструйные генераторы, что дает возможность достижения высокой интенсивности акустической обработки за счет эффективного взаимодействия волнового газового потока с многофазной дисперсной системой продукта. Осуществляется  обработка многофазных сред - газовзвесей, пузырьковых жидкостей, газо- и парожидкостных потоков, смесей взаимонерастворимых жидкостей, многофазной полидисперсной смеси. Газовзвеси могут подаваться в обрабатываемый поток через газоструйный генератор. Разработаны устройства обработки потока, интенсивность ультразвука в которых преобразует водо-торфяную смесь в новое вещество, которое становится в форме биодоступных органических соединений и микроэлементов, включает гуминовые кислоты, фульвокислоты и, таким образом, становится ценным удобрением. Разработанные устройства применяются так же в нефтяной промышленности, пищевой промышленности.
     

    Формула изобретения

     
    1. Способ тепломассоэнергообмена путем акустического воздействия на многокомпонентную и многофазовую смесь твердых, жидких и газовых составляющих обрабатываемого продукта, для чего организуются вихревые и струйные процессы в потоке многофазного продукта, отличающийся тем, что газ или пар вводится  через газоструйные генераторы, что дает возможность достижения высокой интенсивности акустической обработки за счет эффективного взаимодействия волнового газового потока с многофазной дисперсной системой продукта.
    2. Способ по п.1, отличающийся тем, что осуществляется  тепломассоэнергообмен многофазных сред - газовзвесей, пузырьковых жидкостей, газо- и парожидкостных потоков, смесей взаимонерастворимых жидкостей, многофазной полидисперсной смеси.
    3. Способ по п.1, отличающийся тем, что газовзвеси могут подаются в обрабатываемый поток через газоструйный генератор.
    4.  Способ по п.1, отличающийся тем, что осуществляется  тепломассоэнергообмен для полидисперсной водо-торфяной смеси с образованием гуминовых кислот.
    5.  Способ по п.1, отличающийся тем, что поток из газоструйного генератора поступает в вихревой или струйный потоки.
    6. Устройство тепломассоэнергообмена, состоящее из рабочих камер, отличающееся тем, что ввод газа, пара или газовзвеси в обрабатываемый поток осуществляется через газоструйные генераторы.
    7. Устройство по п.6, отличающееся тем, что рабочие камеры объединяются на выходе потока в общей камере озвучивания.
    8. Устройство по п.6, отличающееся тем, что интенсивность акустической обработки потока усиливается за счет синхронизации  волновых кластерных процессов в рабочих камерах, достигаемой геометрией камер с частичным соприкосновением потоков.  
    9. Устройство по п.6, отличающееся тем, что интенсивность акустической обработки потока усиливается за счет проектирования собственной частоты устройства равной заданной, при которой достигается наибольшая деструкция продукта.
    10. Устройство по п.6, отличающееся тем, что в рабочих камерах достигается интенсивность ультразвука, достаточная для получения потока полидисперсной водо-торфяной смеси с образованием вещества с гуминовыми кислотами.
    11. Устройство по п.6, отличающееся тем, что в вихревых потоках обрабатываются пищевые продукты.

     


  •  
         
     
    РОССИЙСКАЯ ФЕДЕРАЦИЯ

    ФЕДЕРАЛЬНАЯ СЛУЖБА
    ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
    ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
    (19) RU (11) 2392046 (13) A  
    (51)  МПК

    B01F11/02   (2006.01)

    (12) ПАТЕНТ НА ИЗОБРЕТЕНИЕ

    Статус: по данным на 26.02.2010 - действует
     
     

    (21), (22) Заявка: 2008102960/12, 25.01.2008

    (43) Дата публикации заявки: 27.07.2009

    Адрес для переписки:
    390007, г.Рязань, ул. Роща, 5, В.С. Аникину

    (71) Заявитель(и):
    Аникин Владимир Семенович (RU),
    Аникин Владимир Владимирович (RU)

    (72) Автор(ы):
    Аникин Владимир Семенович (RU),
    Аникин Владимир Владимирович (RU)

    (54) УСТРОЙСТВО ДЕСТРУКЦИИ УГЛЕВОДОРОДОВ

    (57) Реферат:

    1. Устройство деструкции углеводородов, состоящее из корпуса, выходной акустической камеры и стержня, причем корпус и стержень образуют вихревую трубу, содержащую тангенциальный вход продукта, отличающееся тем, что образующие вихревой трубы получаются из решения вариационной задачи максимальной интегральной энергии деформационно-сдвигового взаимодействия потока с поверхностью вихревой трубы с расположенными на корпусе и стержне элементами - завихрителями потока, причем выходной поток вихревой трубы поступает в выходную акустическую камеру, выполненную в виде концентратора акустической энергии.

    2. Устройство деструкции углеводородов по п.1, отличающееся тем, что устройство содержит две или более вихревых труб, причем вихревые трубы устройства соединены параллельно, последовательно или комбинированным способом.

    3. Устройство деструкции углеводородов по п.1, отличающееся тем, что устройство содержит вводы продуктов, осуществленные с помощью тангенциально расположенных по длине вихревых труб вводов.

    4. Устройство деструкции углеводородов по п.3, отличающееся тем, что вводы газообразного продукта могут быть выполнены в виде газоструйных генераторов, настроенных на заданные частоты и мощности генерации акустических колебаний.

    5. Устройство деструкции углеводородов по п.2, отличающееся тем, что обработанный в вихревых трубах продукт поступает в общую акустическую камеру, выполненную в виде концентратора акустической энергии.

    6. Устройство деструкции углеводородов по п.2, отличающееся тем, что по осям вихревых труб расположены цилиндрические конструктивы - центральные стержни переменного сечения по длине труб с дополнительными завихрителями, воспринимающими сложные гидромеханические переменные импульсы.

    7. Устройство по п.1, отличающееся тем, что с помощью конструктивов стержней и их положения, устройство настраивается на определенный частотный диапазон и максимальную мощность виброакустических колебаний.

    8. Способ применения устройства по п.1 в качестве устройства интенсификации химических реакций с углеводородным продуктом.

    9. Способ применения по п.8 в качестве устройства деструкции углеводородов путем акустического резонансного возбуждения вихревых потоков продуктов в качестве эффективного метода борьбы с парафиноотложениями в насосно-компрессорных трубах при добыче нефти.

    10. Способ применения по п.8 в качестве устройства деструкции углеводородов путем акустического резонансного возбуждения вихревых потоков продуктов в качестве эффективного метода борьбы с парафиноотложениями в наземных трубопроводах транспортировки нефти.

    11. Способ применения по п.8 в качестве устройства деструкции углеводородов путем акустического резонансного возбуждения вихревых потоков продуктов в качестве устройства предкрекинговой обработки нефти с целью увеличения выхода легких фракций нефтепродуктов.

     

     
     
     

  •  
         
     
    РОССИЙСКАЯ ФЕДЕРАЦИЯ

    ФЕДЕРАЛЬНАЯ СЛУЖБА
    ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
    ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
    (19) RU (11) 85838 (13) U1  
    (51)  МПК

    B01F11/02   (2006.01)
    B01J19/10   (2006.01)
    F04F5/14   (2006.01)

    (12) ПАТЕНТ НА ПОЛЕЗНУЮ МОДЕЛЬ

    Статус: по данным на 26.02.2010 - действует
     
     

    (21), (22) Заявка: 2009113521/22, 10.04.2009

    (24) Дата начала отсчета срока действия патента:
    10.04.2009

    (46) Опубликовано: 20.08.2009

    Адрес для переписки:
    390007, г.Рязань, ул. Роща, 5, В.С. Аникину

    (72) Автор(ы):
    Аникин Владимир Семенович (RU),
    Аникин Владимир Владимирович (RU)

    (73) Патентообладатель(и):
    Аникин Владимир Семенович (RU),
    Аникин Владимир Владимирович (RU)

    (54) ЭЖЕКТОР С ГАЗОСТРУЙНЫМИ УЛЬТРАЗВУКОВЫМИ ГЕНЕРАТОРАМИ


    Формула полезной модели

    1. Устройство тепломассоэнергообмена в эжекторе, отличающееся тем, что возбуждение кавитации жидкостного потока осуществляется с помощью газоструйных генераторов с фокусирующей системой путем достижения наибольшей плотности акустического облучения жидкостной струи, обеспечивающей эффективное диспергирование и эмульгирование потока.

    2. Устройство по п.1, отличающееся тем, что газоструйные генераторы выполнены в виде кольцевых сопел, с помощью которых достигается большая акустическая мощность.

    3. Устройство по п.1, отличающееся тем, что ввод газового потока в камеру эжектора осуществляется через несколько входов (патрубков), снабженных регуляторами расхода газа, причем несколько входов соединены с газоструйными генераторами, а один вход - непосредственно с камерой эжектора, это дает возможность регулировать акустическую мощность газоструйного генератора, обеспечить необходимый для эжектирования объем газа и, в некотором диапазоне, регулировать частоту газоструйных генераторов путем регулирования давления газа на входе генераторов.

    4. Устройство по п.1, отличающееся тем, что за счет мелкодисперсного потока жидкости, получаемого в ультразвуковой обработке, увеличивается объем эжектируемого газа.

    5. Устройство по п.1, отличающееся тем, что в ультразвуковом поле эжектора ускоряются химические реакции компонентов газожидкостного продукта.

    6. Устройство по п.1, отличающееся тем, что в смесительной камере эжектора находятся газоструйные генераторы, выполненные в виде кольцевых сопел.

    7. Устройство по п.1, отличающееся тем, что смесительная камера эжектора выполнена в виде концентратора акустической энергии, создающего наибольшую плотность акустического облучения струи жидкости.


     
         

  •  

     



     На Самотлоре более 18и месяцев проводится эксперимент по акустической обработке призабойной зоны, деструкции нефти где полностью устраняется АСПО с помощью устройства ВГУР, установленного на НКТ. 
         Документы можно смотреть по этой ссылке http://vgur.gnm.su
      

    С помощью разработанного автономного погружного инструмента – вихревого гидродинамического ультразвукового реактора (ВГУР), установленного в скважине на колонне НКТ с помощью резьбового соединения непосредственно за насосом, получена деструкция углеводородов нефти. Эффективно используeтся большое статическое давление в скважине, динамика вихря и акустическое давление в резонансных процессах кавитации жидкости и собственной частоты реактора. При мощном кавитационном воздействии на эмульсию нефти в парогазовой фазе происходит процесс гидрокрекинга. В условиях протекания интенсивного кавитационного процесса наблюдается эффект изменения ароматической системы аренов, что позволяет проводить гидрирование без использования специализированных катализаторов. Изменение дисперсно-агрегатного состояния продукта и преобразование химических связей приводит к уменьшению содержания высокомолекулярных углеводородов и увеличению углеводородов бензиновой группы, что приводит к упрощению дальнейших технологий переработки углеводородного сырья. Ультразвук так же воздействует на элементы насоса и уменьшает в нем отложения солей. Призабойная зона при этом получает акустическое воздействие, способствующее стабилизации дебета скважины. Уменьшается так же вязкость прокачиваемой эмульсии и решается проблема АСПО. Устройство работает за счет разности давления жидкости, составляющего 0,5-0,7 мПа, не требует электропитания и обладает надежностью выше насосного агрегата.  


     
     
    РОССИЙСКАЯ ФЕДЕРАЦИЯ

    ФЕДЕРАЛЬНАЯ СЛУЖБА
    ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
    ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
    (19) RU (11) 77176 (13) U1  
    (51)  МПК

    B01F11/02   (2006.01)

    (12) ПАТЕНТ НА ПОЛЕЗНУЮ МОДЕЛЬ

    Статус: по данным на 26.02.2010 - действует
     
     

    (21), (22) Заявка: 2008105509/22, 12.02.2008

    (24) Дата начала отсчета срока действия патента:
    12.02.2008

    (46) Опубликовано: 20.10.2008

    Адрес для переписки:
    390007, г.Рязань, ул. Роща, 5, В.С. Аникину

    (72) Автор(ы):
    Аникин Владимир Семенович (RU),
    Аникин Владимир Владимирович (RU)

    (73) Патентообладатель(и):
    Аникин Владимир Семенович (RU),
    Аникин Владимир Владимирович (RU)

    (54) ГИДРОДИНАМИЧЕСКИЙ УЛЬТРАЗВУКОВОЙ ДЕПАРАФИНИЗАТОР НАСОСНО-КОМПРЕССОРНЫХ ТРУБ


    Формула полезной модели

    1. Устройство депарафинизации насосно-компрессорных труб, состоящее из корпуса, выходной акустической камеры и стержня, причем корпус и стержень образуют вихревую трубу, содержащую тангенциальный вход продукта, отличающееся тем, что образующие вихревой трубы получаются из решения вариационной задачи максимальной интегральной энергии деформационно-сдвигового взаимодействия потока с поверхностью вихревой трубы с расположенными на корпусе и стержне элементами - завихрителями потока, причем выходной поток вихревой трубы поступает в выходную акустическую камеру, выполненную в виде концентратора акустической энергии.

    2. Устройство депарафинизации насосно-компрессорных труб по п.1, отличающееся тем, что устройство содержит две или более вихревых труб, причем вихревые трубы устройства соединены параллельно, последовательно или комбинированным способом.

    3. Устройство депарафинизации насосно-компрессорных труб по п.1, отличающееся тем, что устройство содержит вводы продуктов, осуществленные с помощью тангенциально расположенных по длине вихревых труб вводов.

    4. Устройство депарафинизации насосно-компрессорных труб по п.2, отличающееся тем, что обработанный в вихревых трубах продукт поступает в общую акустическую камеру, выполненную в виде концентратора акустической энергии.

    5. Устройство депарафинизации насосно-компрессорных труб по п.2, отличающееся тем, что по осям вихревых труб расположены цилиндрические конструктивы - центральные стержни переменного сечения по длине труб с дополнительными завихрителями, воспринимающими сложные гидромеханические переменные импульсы.

    6. Устройство по п.1, отличающееся тем, что с помощью конструктивов стержней и их положения устройство настраивается на определенный частотный диапазон и максимальную мощность виброакустических колебаний.

    7. Применение устройства по п.1 в качестве устройства депарафинизации насосно-компрессорных труб путем акустического резонансного возбуждения вихревых потоков продуктов в качестве эффективного метода борьбы с парафиноотложениями в НКТ при добыче нефти.

    8. Применение устройства по п.1 в качестве устройства депарафинизации труб путем акустического резонансного возбуждения вихревых потоков продуктов в качестве эффективного метода борьбы с парафиноотложениями в наземных трубопроводах транспортировки нефти.